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A half-space filled with a viscoeelasto-plastic material is considered, and it is supposed
that a pressure impulse is applied to a sphere sitnated at a certain depth from the free sur-
face. Relations are obtained describing the plastic deformation of the medium, as well as
the propagating zone between the compression and relaxation waves.
The reflection of a stress wave at the free surface is considered, and an analytical in-
vestigation of the state of the medium behind a reflected irrotational wave is carried out.
Expressions are obtained describing the change in intensity of a reflected irrotational
wave, and it is shown that in a certain region the reflected irrotational wave will be a plas-
tic stress wave.
The problem of the propagation of a spherical wave in an elastic prestressed half<space
and its reflection from a free surface was studied by several authors [1, 2].
Here we consider an initially unstressed half+space or visco-elasto-plastic material, On
a sphere Eoof radius R, with center at the point 0 at a depth & from the free surface, a
pressure P, > k \/3 acts during a short time interval {0, zo}, and for ¢ > ¢t  the pressure on
the sphere 2, vanishes. At a given instant ¢> ¢, a portion of the materia?. bounded between
wave surfaces 2 and ¥, , (irrotational stress and relaxation waves propagating with velo-
city ¢o =[(A+ 2u) /p]*) will be in the plastic state, whereas the material between the
surfaces 22 and 20 will be in the elastic state.
At the time ¢t = A/c_ the wave surface 3,  reaches the free
0, surface and for t > A/c_ there are two reflected waves 3, and
i lin 2 4 in the half-space; these are the irrotational and equivolu~
v minal waves, propagating with velocities ¢_andc¢_= (u/p)}¥%
respectively (Fig., 1, where P denotes that the medium is de-
formed plastically, and E denotes elastic deformation).
In this note relations are obtained describing plastic defor-
. mation of the material between the surfaces 2, and 3 gand the
behavior of the material on the reflected irrotational wave 5,3.

R
2 Ja 1. We consider a visco-elasto-plastic material, The rheolo~
N0 E P gical equation of the material has the form [3]
L, g & Oy =Rey By + 20 (e — e

v (1.4)
Fig- 1 " =T aqp S (% — Mey") (5 — we, D) =2k

8 =0y — 3By &P =de,P /0t
Here A, y are Lamé parameters, 7 is the coefficient of viscosity, k is the plastic limit,

317



318 N.D. Verveiko

and i/ a positive coefficient. The stress oy and velocity of displacement v, satisfy the

equation of motion
ds v
3] {
—p5 =0 (1.2)

az;
}
4
Eliminating the quantities ¢y, &;; from the system (1.1), (1.2) and using spherical coor-
dinates with center at O under the assumptions
Up =0y =10, 0, =0y = 0= 0,
we obtain a system of three differential equations, describing the plastic deformation of
the material between the surfaces 21 and 3, 2

651 2 dv
o Ty =agy
a0, o v 4 _
5t =0 +B7 3@ —6+ Vi) (1.3)
3ca o » 2 -
St =B +@+B -+ FrE—0+ Vi)
Here
S, Goo v r 3 A4-2 A h
°1="'kz'v S2== Ty V=“;:"’ F=7" t="p¢c, a::__k*l"_' B;Iy T=£;

are dimensionless quantities.
The solution in the zone of plasticity is represented in the form of a ray expansion

fi-= —®, —eQ — llgeﬁgl. —_— (1.4)

h=¢, fi=0s, fa=v, e=t—r

af, f,
o=t w=[z] =[]

are defined on the surface El.
Limiting consideration to quantities of first order in & in (1.4) and using the condition

of dynamic and kinematic compatibility [5], we obtain values for W, and ¢ 388 follows

The quantities

" _
ma:—riexp [—g(@—B)r]— aKBB [1 “g(a—1 B)r]
c 3 1
%2[02—2"‘,1 —Ci5 ¢ (@F —B?) ’]Tew (—¢(—B)r)— (1.5)

V3

2
The constants Cl and C2 are determined from the conditions

dw
re=ro, Por=-—aw;, Pr=--d g (1.6)

One may in the same manner determine w, , © 2 o) 1 and ¢Z The stress and velocity in
the zone of elasticity between the surfaces to and Ez will not be calculated; we note, how-
ever, that they are quantities of order e.

2. We consider the change in the intensity @ (1) 6f the reflected irrotational wave 3, 3

in the process of its propagation inthedirection v(¥ from the point 0,. The jumps ing
and v, across each wave surface in the neighborhood of the reflection point 4 must satisfy

a condition of dynamic compatibility [3]
a—B
—c[61j1=B[vk] Vkﬁu--{— 2 ((",-] Vj'f‘ [”,’] Vi) (2.1)

Here
¢=co=1 for 2andZ,, c=c,= [(a— B)/ 2P for T,
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On the free surface the following condition should be satisfied:
4
o,n; =0 @2
The conditions that 3, and 3, are irrotational and equivoluminal wave surfaces take the
form
(0,®1 v, = o, b v®=0 (23)
Setting
n = (cos@, —sing,0} vim = {1, 0, 0}
v == (—cos29,5in29, 0, V@ ={—cos(@+¥)sin(@+¥). 0 (8
(where ¢ is the angle between the free surface and the wave I ,, and ) is the angle between

the free surface and the wave 2‘), we solve the system of equations (2.1) to (2.3) for m;”
at the point M under the conditions that

S (B yh_siny

o "(u——-B) T siny (2.5)
tgp-—-tgptg32yp

&)3(1)= — Cﬁ)a» g == tgq’ ’f' tg:ﬁ‘g’% (2-6)

Following the argument in [3], we may obtain the change in intensity of the wave & 30
knowing its type, which is characterized by the state of the material o the two sides of
3,

3 - .
As the wave X traverses the zone of plastic deformation between X and X _, {fwill be
a plastic wave iflza 2 1, end will be a relaxation wave if/ , <1. Calculating the inten-

sity of the tangential stresses ] = % 8y Sy behind the surface 23, we obtain a condition
for the determination of the wave type
V3

2
Igy= (;%) BLsin®29 4 (1 — 0P, =g (2.7

where (0, , is the intensity of the wave surface S astosoo.

An analysis of relations (2.7) shows that for ¢ a little differin; fro:n zero and for @4/ 00
finite, < 1, i.e., the reflected irrotational wave 23 is a relaxation wave. However for ¢, <
< ¢ <, where ¢, and ¢ ,are obtained from the condition / = 1, p 3inay become a plastic
wave.

At the point M 1( 1) behind the wave surface, the material undergoes elastic stress to the
left of the point M!(" and plastic to the right. Since the in-
tensity @ 3( 1) of the wave surface 23 changes continuocusly
along ¥, , the point M, may be the source of a weak distur-
bance which according Huyghens’ principle will propagate in
the form of an axisymmetric wave surface 3 on which the
third derivatives of oy and v, will be discontinuous, so that
the surface will separate zones of elastic and plastic behav-
ior behind 2_, (Fig. 2) .

For ¢, < ¢h < % the reflected irrotational wave X agein
becomes a relaxation wave and at the point M ‘ (p= J R
23 the same phenomenan occurs as does at M, .

The dependence F = I(msm/ms)2 is given in Fig, 3 for
different values of Poisson’s ratio o = 0, 0.1, ..., 0.5. From
the figure it follows that o= 0,3 to 0.5 for P10 <P<D g

Fig. 2 where b | = 20° and quo = 70% a spherical reflected wave
at finite @ ,/w3,,> 1 is always reflected by a plastic wave. For 0 < < b, and b 0 < $<
< 11/2 the reflected wave surface 3, at the instant of reflection is a relaxation wave.

The intensity of the relaxation wave 23 varies during its propagation according to Eq.

{3}
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5(03(1) 1
8 (81 v @@ =721 (35 — 5in> 20) (01 — 03 + V'3)
L,
o 01 —Ga == — (@ — B) g — & (Py — @a) — . . .
) 1N //0 \ (@ — B) s — & (g1 — @)
“ 08—\ e=t—r, r= VYB—dicosqoti
2 | The time ¢, of traversal of the wave 3., of the zone
1 3
H PRSP <N of plastic deformation between El and 22 is determined
by
¢ = < 2.9
0 30 50 90 ho= Cosg O<o<w  G9
. 4 — g* 1 1
Fig. 3 b= cosg—e) zcos7;(;)+8t:()s”t]> +.-

Integrating relations (2.8) under conditions (2.9), we obtain

1 -
C, (s 2 o gl _ﬂ...-.
o= Zo TEZB (2 gineng) [Cw e e

al
0
S 30 ws 2V
—t ViE—4dtcosgt4) (q}g -+ —El + 2y — 7+ -C;-:_-B—') de {2.10)
The constant of integration Cs is found from the condition ¢t = o0 a)(;) = 4’(02. It

should be noted that for ¢ = % arc sin/2/3 the intensity of the wave 2, changes according
to the law of propagation of elastic waves, if % arc siny/2/3 < ¢b. At the instant ¢ = tog the
reflected irrotational wave S _ enters the zone of elastic stress behind the surface X . From
the condition of dynamic compatibility (2.1) at the intersection of the wave fronts 22 and 3,
it follows that their intersection is regular, i.e. the intersecting waves do not interact,

We ‘study the character of the wave X _ as it enters the elastic zone. From the condition
of dynamic compatibility (2.1) we calculate ] behind X, for t = ¢,

(Oa(u (‘20) 2 ‘
1= (——o;;;-—) @.11)

3

where ;
@0 (tag) = — Loxg (t20) +- & (%5 — sin?® 2¢) x

@3 (1) T Vé Cry@—B) .,
X{ 2ty 4 208 (0 — By tgy T al P (G L

From relations (2.11) and (2.12) it follows that for ¢ = 0, { = 1 the reflected irrotational
wave 23 enters the elastic zone as a plastic stress wave with intensity @ {1 (¢ o) and

(2.12)

propagates further according to the law (2.8).
In the firection ¢1 < ¢ < b, the reflected wave 23 is a plastic wave and dies out for

small 0)3( 1 according to the law [3]

¢
PR ) (1) i ¢ e 2(s,v, Oy D)
ws™ (t,)::._.l._t_"f_exp {~— .3_,],\ [1__ l/s c-(i"‘ us:ls..J v)] clt}
T,

siy S
tio ir 4 3 i)

5,5V, == (¥ — sint 20) (51 — 02) (2.13)

$iSi=hr—o) (<1< tw)

Here ¢, increases as ¢ » /2 and the expansion of t,, in powers of & diverges.

On entering the elastic zone behind the surface 22 the relaxation wave X, may be a
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Fig. 4

plastic stress wave (¢, < b < ¢,) or an elastic wave (B, <
& <m/2), depending on the sign of the inequality o' (¢,4)
Z 0 400
Tﬁ: point M, on the wave surface . is a point of transe
ition from plastic deformation behind 23 to elastic behind
S.. at the instant of intersection of the wave surfaces T
and Y. and is a source of weak disturbance, which wili
propagate in the form of a toroidal wave surface 26' on
which the third derivatives of g,, and v, may be discontin-
uous, so that behind ¥ in the region MM, the medium is
plastically deformed, and in the region M, M, elastically
(Fig. 4).

Thus the reflected irrotational wave X will propagate
in the zonc behind ¥_ as a stress wave for 0 < p < h, ac-
cording to the law (2.8) and as an elastic wave forp <<
<m/2
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